Close Menu
  • Home
  • Opinion
  • Region
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Oceania
    • South America
  • AI & Machine Learning
  • Robotics & Automation
  • Space & Deep Tech
  • Web3 & Digital Economies
  • Climate & Sustainability Tech
  • Biotech & Future Health
  • Mobility & Smart Cities
  • Global Tech Pulse
  • Cybersecurity & Digital Rights
  • Future of Work & Education
  • Trend Radar & Startup Watch
  • Creator Economy & Culture
What's Hot

Google perhaps eradicating outdated At a Look widget on Pixel telephones

November 12, 2025

This analyst simply raised his worth goal on Village Farms

November 12, 2025

Uzbek Ambassador in Abu Dhabi Hosts Reception to Mark Nationwide Day

November 12, 2025
Facebook X (Twitter) Instagram LinkedIn RSS
NextTech NewsNextTech News
Facebook X (Twitter) Instagram LinkedIn RSS
  • Home
  • Africa
  • Asia
  • Europe
  • Middle East
  • North America
  • Oceania
  • South America
  • Opinion
Trending
  • Google perhaps eradicating outdated At a Look widget on Pixel telephones
  • This analyst simply raised his worth goal on Village Farms
  • Uzbek Ambassador in Abu Dhabi Hosts Reception to Mark Nationwide Day
  • J&T strikes 80M parcels a day—how did it grow to be a courier powerhouse?
  • 27 scientists in Eire on Extremely Cited Researchers listing
  • A Community Chief Powering India’s Digital Future
  • Tremendous Mario Galaxy Film will get first trailer, new casting particulars
  • Honasa widens premium play with oral magnificence wager, says fast commerce drives 10% of complete income
Wednesday, November 12
NextTech NewsNextTech News
Home - AI & Machine Learning - A Complete Coding Tutorial for Superior SerpAPI Integration with Google Gemini-1.5-Flash for Superior Analytics
AI & Machine Learning

A Complete Coding Tutorial for Superior SerpAPI Integration with Google Gemini-1.5-Flash for Superior Analytics

NextTechBy NextTechJune 7, 2025No Comments9 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Telegram Email Copy Link
Follow Us
Google News Flipboard
A Complete Coding Tutorial for Superior SerpAPI Integration with Google Gemini-1.5-Flash for Superior Analytics
Share
Facebook Twitter LinkedIn Pinterest Email


On this tutorial, we exhibit tips on how to mix the facility of SerpAPI’s Google search capabilities with Google’s Gemini-1.5-Flash mannequin to create a sophisticated, end-to-end analysis and evaluation workflow inside a Google Colab pocket book. By defining an AdvancedSerpAPI Python class, customers acquire entry to enhanced search strategies that cowl basic internet outcomes, information articles, and pictures, whereas additionally leveraging Gemini to carry out in-depth analyses of these outcomes. The code gives specialised utilities for focusing on Marktechpost tutorials, aggregating content material throughout classes like LangChain, ChatGPT, and MLOps, after which synthesizing actionable insights utilizing a rigorously constructed immediate.

!pip set up google-search-results langchain-community langchain-core google-generativeai -q


import os
import json
from serpapi import GoogleSearch
import google.generativeai as genai
from datetime import datetime

We set up the required Python packages for SerpAPI searches, LangChain utilities, and Google’s Gemini SDK. The next imports herald customary modules (os, json, datetime) for setting configuration, JSON dealing with, and timestamps, in addition to SerpAPI’s GoogleSearch class for making API calls and genai for interacting with the Gemini mannequin.

SERPAPI_API_KEY = "Use Your API Key Right here"  
GEMINI_API_KEY = "Use Your API Key Right here"  


os.environ["SERPAPI_API_KEY"] = SERPAPI_API_KEY
genai.configure(api_key=GEMINI_API_KEY)

We assign placeholder strings to your SerpAPI and Gemini API keys, then set the SerpAPI key as an setting variable (so SerpAPI calls authenticate routinely) and configure the Gemini consumer with its API key so you’ll be able to invoke the Gemini mannequin.

class AdvancedSerpAPI:
    def __init__(self, serpapi_key, gemini_key):
        self.serpapi_key = serpapi_key
        self.gemini_model = genai.GenerativeModel('gemini-1.5-flash')
       
    def search_google(self, question, num_results=5, location="United States"):
        """Enhanced Google search with a number of parameters"""
        params = {
            "engine": "google",
            "q": question,
            "api_key": self.serpapi_key,
            "num": num_results,
            "location": location,
            "hl": "en",
            "gl": "us"
        }
       
        search = GoogleSearch(params)
        outcomes = search.get_dict()
        return self.extract_search_results(outcomes)
   
    def search_news(self, question, days_back=7):
        """Seek for current information articles"""
        params = {
            "engine": "google_news",
            "q": question,
            "api_key": self.serpapi_key,
            "gl": "us",
            "hl": "en"
        }
       
        search = GoogleSearch(params)
        outcomes = search.get_dict()
        return self.extract_news_results(outcomes)
   
    def search_images(self, question, num_images=10):
        """Seek for photos with metadata"""
        params = {
            "engine": "google_images",
            "q": question,
            "api_key": self.serpapi_key,
            "num": num_images
        }
       
        search = GoogleSearch(params)
        outcomes = search.get_dict()
        return self.extract_image_results(outcomes)
   
    def extract_search_results(self, outcomes):
        """Extract and clear search outcomes"""
        cleaned_results = []
        if 'organic_results' in outcomes:
            for lead to outcomes['organic_results']:
                cleaned_results.append({
                    'title': consequence.get('title', ''),
                    'hyperlink': consequence.get('hyperlink', ''),
                    'snippet': consequence.get('snippet', ''),
                    'place': consequence.get('place', 0)
                })
        return cleaned_results
   
    def extract_news_results(self, outcomes):
        """Extract information articles with timestamps"""
        news_results = []
        if 'news_results' in outcomes:
            for article in outcomes['news_results']:
                news_results.append({
                    'title': article.get('title', ''),
                    'hyperlink': article.get('hyperlink', ''),
                    'snippet': article.get('snippet', ''),
                    'date': article.get('date', ''),
                    'supply': article.get('supply', '')
                })
        return news_results
   
    def extract_image_results(self, outcomes):
        """Extract picture outcomes with metadata"""
        image_results = []
        if 'images_results' in outcomes:
            for img in outcomes['images_results']:
                image_results.append({
                    'title': img.get('title', ''),
                    'authentic': img.get('authentic', ''),
                    'thumbnail': img.get('thumbnail', ''),
                    'supply': img.get('supply', '')
                })
        return image_results
   
    def analyze_with_gemini(self, search_results, analysis_prompt):
        """Use Gemini Flash to investigate search outcomes"""
        results_text = json.dumps(search_results, indent=2)
       
        full_prompt = f"""
        {analysis_prompt}
       
        Search Outcomes Knowledge:
        {results_text}
       
        Please present a complete evaluation based mostly on the search outcomes.
        """
       
        attempt:
            response = self.gemini_model.generate_content(full_prompt)
            return response.textual content
        besides Exception as e:
            return f"Gemini evaluation failed: {str(e)}"
   
    def search_marktechpost_tutorials(self, matter="", num_results=10):
        """Search particularly for trending tutorials from Marktechpost"""
        queries = [
            f"site:marktechpost.com {topic} tutorial guide how-to 2024 2025",
            f"site:marktechpost.com trending {topic} tutorial",
            f"site:marktechpost.com top {topic} books frameworks"
        ]
       
        all_results = []
        for question in queries:
            params = {
                "engine": "google",
                "q": question,
                "api_key": self.serpapi_key,
                "num": num_results // len(queries),
                "hl": "en",
                "gl": "us"
            }
           
            search = GoogleSearch(params)
            outcomes = search.get_dict()
            extracted = self.extract_search_results(outcomes)
            all_results.lengthen(extracted)
       
        unique_results = []
        seen_links = set()
        for lead to all_results:
            if consequence['link'] not in seen_links:
                unique_results.append(consequence)
                seen_links.add(consequence['link'])
       
        return unique_results[:num_results]
   
    def get_trending_marktechpost_content(self, classes=None):
        """Get trending content material from Marktechpost throughout completely different classes"""
        if classes is None:
            classes = ["AI", "LLM", "Machine Learning", "Python", "Tutorial", "Framework"]
       
        trending_content = {}
       
        for class in classes:
            print(f"🔍 Trying to find trending {class} content material...")
            outcomes = self.search_marktechpost_tutorials(class, num_results=5)
            trending_contentAgentic AI = outcomes
            print(f"✅ Discovered {len(outcomes)} {class} tutorials")
       
        return trending_content


    def smart_research(self, matter, research_depth="medium", focus_marktechpost=True):
        """Clever analysis combining a number of search varieties with Marktechpost focus"""
        print(f"🔍 Beginning sensible analysis on: {matter}")
       
        if focus_marktechpost:
            marktechpost_results = self.search_marktechpost_tutorials(matter, num_results=8)
            print(f"✅ Discovered {len(marktechpost_results)} Marktechpost tutorials")
           
            web_results = self.search_google(f"{matter} tutorial information", num_results=3)
            print(f"✅ Discovered {len(web_results)} further internet outcomes")
           
            all_web_results = marktechpost_results + web_results
        else:
            all_web_results = self.search_google(f"{matter} overview info", num_results=5)
            print(f"✅ Discovered {len(all_web_results)} internet outcomes")
       
        news_results = self.search_news(matter)
        print(f"✅ Discovered {len(news_results)} information articles")
       
        analysis_prompt = f"""
        Analyze the search outcomes about '{matter}' with concentrate on Marktechpost content material and supply:
        1. Key tutorials and guides accessible
        2. Trending matters and frameworks
        3. Studying sources and books talked about
        4. Latest developments and updates
        5. Sensible implementation guides
        6. Really useful studying path
       
        Concentrate on actionable insights and studying sources.
        """
       
        all_results = {
            "marktechpost_results": marktechpost_results if focus_marktechpost else [],
            "web_results": all_web_results,
            "news_results": news_results,
            "search_topic": matter,
            "timestamp": datetime.now().isoformat()
        }
       
        gemini_analysis = self.analyze_with_gemini(all_results, analysis_prompt)
       
        return {
            "matter": matter,
            "marktechpost_tutorials": marktechpost_results if focus_marktechpost else [],
            "web_results": all_web_results,
            "news_results": news_results,
            "ai_analysis": gemini_analysis,
            "total_sources": len(all_web_results) + len(news_results)
        }

This class, AdvancedSerpAPI, encapsulates SerpAPI-based search strategies (internet, information, and pictures) and helper features to scrub the ensuing JSON information. It additionally integrates a Gemini-1.5-Flash mannequin, by way of analyze_with_gemini, to generate an AI-driven abstract of any collected search information. Further utilities embody specialised Marktechpost tutorial lookups, a “get trending” routine throughout classes, and a mixed “sensible analysis” workflow that stitches collectively tutorials, internet outcomes, information, and Gemini evaluation.

def demo_marktechpost_tutorials():
    """Demo particularly centered on Marktechpost tutorials"""
   
    searcher = AdvancedSerpAPI(SERPAPI_API_KEY, GEMINI_API_KEY)
   
    print("🚀 Marktechpost Trending Tutorials Finder")
    print("=" * 50)
   
    print("n📚 Demo 1: Trending Marktechpost Tutorials by Class")
    trending_content = searcher.get_trending_marktechpost_content([
        "LangChain", "ChatGPT", "Python", "AI", "MLOps"
    ])
   
    for class, tutorials in trending_content.gadgets():
        print(f"n🔥 Trending {class} Tutorials:")
        for i, tutorial in enumerate(tutorials[:3], 1):
            print(f"  {i}. {tutorial['title']}")
            print(f"     📎 {tutorial['link']}")
            if tutorial['snippet']:
                print(f"     📝 {tutorial['snippet'][:100]}...")
   
    print("n🎯 Demo 2: Deep Dive - LangChain Tutorials")
    langchain_research = searcher.smart_research("LangChain", focus_marktechpost=True)
   
    print(f"n📊 Analysis Abstract:")
    print(f"Subject: {langchain_research['topic']}")
    print(f"Marktechpost Tutorials Discovered: {len(langchain_research['marktechpost_tutorials'])}")
    print(f"Complete Sources: {langchain_research['total_sources']}")
   
    print(f"n🤖 AI Evaluation Preview:")
    print(langchain_research['ai_analysis'][:600] + "..." if len(langchain_research['ai_analysis']) > 600 else langchain_research['ai_analysis'])
   
    print("n📰 Demo 3: Newest AI Tendencies from Marktechpost")
    ai_trends = searcher.search_marktechpost_tutorials("AI traits 2024 2025", num_results=5)
   
    print("Latest AI development articles:")
    for i, article in enumerate(ai_trends, 1):
        print(f"{i}. {article['title']}")
        print(f"   🔗 {article['link']}")


def demo_advanced_serpapi():
    """Complete demo of SerpAPI capabilities"""
   
    searcher = AdvancedSerpAPI(SERPAPI_API_KEY, GEMINI_API_KEY)
   
    print("🚀 Superior SerpAPI Tutorial with Gemini Flash")
    print("=" * 50)
   
    print("n📊 Demo 1: Sensible Analysis on AI Know-how")
    research_results = searcher.smart_research("synthetic intelligence 2024 traits")
   
    print(f"n🔍 Analysis Abstract:")
    print(f"Subject: {research_results['topic']}")
    print(f"Complete Sources: {research_results['total_sources']}")
   
    print(f"n🤖 AI Evaluation Preview:")
    print(research_results['ai_analysis'][:500] + "..." if len(research_results['ai_analysis']) > 500 else research_results['ai_analysis'])
   
    print("n📰 Demo 2: Latest Information Search")
    tech_news = searcher.search_news("expertise breakthrough", days_back=7)
   
    print(f"Discovered {len(tech_news)} current tech information articles:")
    for i, article in enumerate(tech_news[:3], 1):
        print(f"{i}. {article['title'][:80]}...")
        print(f"   Supply: {article['source']} | Date: {article['date']}")
   
    print("n🖼️  Demo 3: Picture Search")
    space_images = searcher.search_images("house exploration 2024", num_images=5)
   
    print(f"Discovered {len(space_images)} space-related photos:")
    for i, img in enumerate(space_images[:3], 1):
        print(f"{i}. {img['title'][:60]}...")
        print(f"   Supply: {img['source']}")

demo_marktechpost_tutorials() initializes the AdvancedSerpAPI class and prints trending tutorials from Marktechpost for an inventory of classes (LangChain, ChatGPT, Python, AI, MLOps). It then performs a “deep dive” sensible analysis on “LangChain,” displaying counts of tutorials and a preview of Gemini’s AI evaluation. Lastly, it retrieves and lists the highest 5 current “AI traits 2024–2025” articles from Marktechpost. 

Additionally, demo_advanced_serpapi() creates an AdvancedSerpAPI occasion however focuses on a broader workflow: it runs sensible analysis on “synthetic intelligence 2024 traits” and prints the subject abstract and AI evaluation snippet. It then performs a information seek for “expertise breakthrough,” lists the primary three articles with sources and dates, and concludes by fetching and displaying a handful of “house exploration 2024” picture outcomes.

if __name__ == "__main__":
    if SERPAPI_API_KEY == "your_serpapi_key_here" or GEMINI_API_KEY == "your_gemini_key_here":
        print("⚠️  Please set your API keys earlier than working the demo!")
        print("1. Get SerpAPI key from: https://serpapi.com")
        print("2. Get Gemini API key from: https://makersuite.google.com")
    else:
        print("🎯 Operating Marktechpost-focused demo...")
        demo_marktechpost_tutorials()
       
        print("n" + "="*50)
        print("🌟 Operating basic demo...")
        demo_advanced_serpapi()


def compare_search_engines(question, engines=['google', 'bing', 'duckduckgo']):
    """Examine outcomes throughout completely different serps"""
    outcomes = {}
   
    for engine in engines:
        params = {
            "engine": engine,
            "q": question,
            "api_key": SERPAPI_API_KEY
        }
       
        attempt:
            search = GoogleSearch(params)
            outcomes[engine] = search.get_dict()
        besides Exception as e:
            outcomes[engine] = {"error": str(e)}
   
    return outcomes


def trending_searches(location="United States"):
    """Get trending searches"""
    params = {
        "engine": "google_trends_trending_now",
        "api_key": SERPAPI_API_KEY,
        "geo": location
    }
   
    search = GoogleSearch(params)
    return search.get_dict()


print("✅ Superior SerpAPI Tutorial with Marktechpost Focus loaded efficiently!")
print("🔑 Keep in mind to set your API keys earlier than working demos")
print("📚 New Features: search_marktechpost_tutorials, get_trending_marktechpost_content")
print("🎯 Marktechpost-specific options: LangChain, ChatGPT, Python, AI, MLOps tutorials")


print("n🚀 Fast Begin Examples:")
print("searcher = AdvancedSerpAPI(SERPAPI_API_KEY, GEMINI_API_KEY)")
print("langchain_tutorials = searcher.search_marktechpost_tutorials('LangChain')")
print("trending_ai = searcher.get_trending_marktechpost_content(['AI', 'Python'])")
print("analysis = searcher.smart_research('ChatGPT', focus_marktechpost=True)")

Lastly, the part features a Python “important” guard that first verifies your SerpAPI and Gemini keys, prompting you to acquire them in the event that they’re nonetheless placeholders, and in any other case runs the Marktechpost‐centered and basic demos in sequence. It additionally defines two utility features: compare_search_engines, which queries a number of serps (Google, Bing, DuckDuckGo) by way of SerpAPI and returns their uncooked JSON outcomes or errors, and trending_searches, which fetches at present’s trending matters utilizing the Google Tendencies endpoint. After these definitions, the script prints a quick standing message confirming that the tutorial loaded efficiently, reminds you to set your API keys, and highlights newly added strategies for fetching Marktechpost tutorials and trending content material.

In conclusion, by following this tutorial, customers may have a reusable, modular Python class that streamlines internet analysis and evaluation, from performing keyword-driven searches to routinely summarizing findings utilizing Gemini-powered AI. The mix of SerpAPI’s dependable search endpoints and Gemini’s pure language understanding permits a seamless “research-to-insights” workflow, very best for content material creators, builders, and technical groups who want to remain up-to-date with the most recent tutorials and trade traits.


Try the Pocket book right here. All credit score for this analysis goes to the researchers of this undertaking. Additionally, be happy to comply with us on Twitter and don’t overlook to hitch our 95k+ ML SubReddit and Subscribe to our E-newsletter.


Asif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is dedicated to harnessing the potential of Synthetic Intelligence for social good. His most up-to-date endeavor is the launch of an Synthetic Intelligence Media Platform, Marktechpost, which stands out for its in-depth protection of machine studying and deep studying information that’s each technically sound and simply comprehensible by a large viewers. The platform boasts of over 2 million month-to-month views, illustrating its reputation amongst audiences.

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
NextTech
  • Website

Related Posts

Maya1: A New Open Supply 3B Voice Mannequin For Expressive Textual content To Speech On A Single GPU

November 12, 2025

Methods to Cut back Price and Latency of Your RAG Software Utilizing Semantic LLM Caching

November 12, 2025

Baidu Releases ERNIE-4.5-VL-28B-A3B-Considering: An Open-Supply and Compact Multimodal Reasoning Mannequin Beneath the ERNIE-4.5 Household

November 12, 2025
Add A Comment
Leave A Reply Cancel Reply

Economy News

Google perhaps eradicating outdated At a Look widget on Pixel telephones

By NextTechNovember 12, 2025

The At a Look Widget on Google Pixel telephones has been the bane of my…

This analyst simply raised his worth goal on Village Farms

November 12, 2025

Uzbek Ambassador in Abu Dhabi Hosts Reception to Mark Nationwide Day

November 12, 2025
Top Trending

Google perhaps eradicating outdated At a Look widget on Pixel telephones

By NextTechNovember 12, 2025

The At a Look Widget on Google Pixel telephones has been the…

This analyst simply raised his worth goal on Village Farms

By NextTechNovember 12, 2025

Village Farms’ breakout second quarter wasn’t a one-off, in keeping with Beacon…

Uzbek Ambassador in Abu Dhabi Hosts Reception to Mark Nationwide Day

By NextTechNovember 12, 2025

His Excellency Suhail Mohamed Al Mazrouei, UAE Minister of Vitality and Infrastructure,…

Subscribe to News

Get the latest sports news from NewsSite about world, sports and politics.

NEXTTECH-LOGO
Facebook X (Twitter) Instagram YouTube

AI & Machine Learning

Robotics & Automation

Space & Deep Tech

Web3 & Digital Economies

Climate & Sustainability Tech

Biotech & Future Health

Mobility & Smart Cities

Global Tech Pulse

Cybersecurity & Digital Rights

Future of Work & Education

Creator Economy & Culture

Trend Radar & Startup Watch

News By Region

Africa

Asia

Europe

Middle East

North America

Oceania

South America

2025 © NextTech-News. All Rights Reserved
  • About Us
  • Contact Us
  • Privacy Policy
  • Terms Of Service
  • Advertise With Us
  • Write For Us
  • Submit Article & Press Release

Type above and press Enter to search. Press Esc to cancel.

Subscribe For Latest Updates

Sign up to best of Tech news, informed analysis and opinions on what matters to you.

Invalid email address
 We respect your inbox and never send spam. You can unsubscribe from our newsletter at any time.     
Thanks for subscribing!