Close Menu
  • Home
  • Opinion
  • Region
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Oceania
    • South America
  • AI & Machine Learning
  • Robotics & Automation
  • Space & Deep Tech
  • Web3 & Digital Economies
  • Climate & Sustainability Tech
  • Biotech & Future Health
  • Mobility & Smart Cities
  • Global Tech Pulse
  • Cybersecurity & Digital Rights
  • Future of Work & Education
  • Trend Radar & Startup Watch
  • Creator Economy & Culture
What's Hot

Digital Asset Restoration Lifts Korea’s Exchanges: Dunamu & Bithumb Report Explosive Q3 Development Amid U.S. Regulatory Changes – KoreaTechDesk

November 15, 2025

How Kílẹ̀ńtàr navigates intra-African commerce gaps to scale

November 15, 2025

Valve is ready on extra energy environment friendly chips for Steam Deck 2

November 15, 2025
Facebook X (Twitter) Instagram LinkedIn RSS
NextTech NewsNextTech News
Facebook X (Twitter) Instagram LinkedIn RSS
  • Home
  • Africa
  • Asia
  • Europe
  • Middle East
  • North America
  • Oceania
  • South America
  • Opinion
Trending
  • Digital Asset Restoration Lifts Korea’s Exchanges: Dunamu & Bithumb Report Explosive Q3 Development Amid U.S. Regulatory Changes – KoreaTechDesk
  • How Kílẹ̀ńtàr navigates intra-African commerce gaps to scale
  • Valve is ready on extra energy environment friendly chips for Steam Deck 2
  • Inside Dubai’s New Gifting Obsession: Flowers That Converse With out Phrases
  • Sony is making a Horizon MMO for iOS and Android
  • Rallis India Unveils NuCode™ – Science-Pushed Options for Soil & Plant Well being
  • How Jephte Ioudom Foubi began a consulting enterprise in Portugal
  • Samsung Galaxy Z TriFold probably launching on December 5
Saturday, November 15
NextTech NewsNextTech News
Home - AI & Machine Learning - A Coding Information to Construct an AI Code-Evaluation Agent with Griffe
AI & Machine Learning

A Coding Information to Construct an AI Code-Evaluation Agent with Griffe

NextTechBy NextTechJuly 19, 2025No Comments5 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Telegram Email Copy Link
Follow Us
Google News Flipboard
A Coding Information to Construct an AI Code-Evaluation Agent with Griffe
Share
Facebook Twitter LinkedIn Pinterest Email


class AICodeAnalyzer:
   """AI Agent for superior code evaluation utilizing Griffe"""
  
   def __init__(self):
       self.analysis_cache = {}
       self.dependency_graph = nx.DiGraph()
  
   def analyze_package(self, package_name: str, search_paths: Checklist[str] = None) -> Dict[str, Any]:
       """Complete bundle evaluation for AI choice making"""
       strive:
           pkg = griffe.load(package_name, search_paths=search_paths, try_relative_path=False)
          
           evaluation = {
               'package_name': package_name,
               'total_modules': 0,
               'total_classes': 0,
               'total_functions': 0,
               'complexity_score': 0,
               'api_surface': [],
               'inheritance_tree': {},
               'risk_factors': []
           }
          
           self._analyze_object(pkg, evaluation)
          
           evaluation['complexity_score'] = self._calculate_complexity(evaluation)
          
           evaluation['risk_factors'] = self._identify_risks(pkg, evaluation)
          
           self.analysis_cache[package_name] = evaluation
           return evaluation
          
       besides Exception as e:
           return {'error': f"Failed to investigate {package_name}: {str(e)}"}
  
   def analyze_simple_module(self, module_name: str) -> Dict[str, Any]:
       """Analyze a easy module with out deep dependency decision"""
       strive:
           import importlib
           module = importlib.import_module(module_name)
          
           evaluation = {
               'package_name': module_name,
               'total_modules': 1,
               'total_classes': 0,
               'total_functions': 0,
               'complexity_score': 0,
               'api_surface': [],
               'inheritance_tree': {},
               'risk_factors': []
           }
          
           for attr_name in dir(module):
               if not attr_name.startswith('_'): 
                   attr = getattr(module, attr_name)
                   if isinstance(attr, sort): 
                       evaluation['total_classes'] += 1
                       evaluation['api_surface'].append({
                           'identify': f"{module_name}.{attr_name}",
                           'sort': 'class',
                           'public': True,
                           'docstring': bool(attr.__doc__),
                           'strategies': len([m for m in dir(attr) if not m.startswith('_')])
                       })
                   elif callable(attr): 
                       evaluation['total_functions'] += 1
                       evaluation['api_surface'].append({
                           'identify': f"{module_name}.{attr_name}",
                           'sort': 'perform',
                           'public': True,
                           'docstring': bool(attr.__doc__),
                           'parameters': 0 
                       })
          
           evaluation['complexity_score'] = self._calculate_complexity(evaluation)
          
           evaluation['risk_factors'] = self._identify_basic_risks(evaluation)
          
           self.analysis_cache[module_name] = evaluation
           return evaluation
          
       besides Exception as e:
           return {'error': f"Failed to investigate {module_name}: {str(e)}"}
  
   def _analyze_object(self, obj, evaluation: Dict[str, Any], path: str = ""):
       """Recursively analyze bundle objects"""
       strive:
           current_path = f"{path}.{obj.identify}" if path else obj.identify
          
           if hasattr(obj, 'form'):
               if obj.form.worth == 'module':
                   evaluation['total_modules'] += 1
               elif obj.form.worth == 'class':
                   evaluation['total_classes'] += 1
                   evaluation['api_surface'].append({
                       'identify': current_path,
                       'sort': 'class',
                       'public': not obj.identify.startswith('_'),
                       'docstring': bool(obj.docstring),
                       'strategies': len([m for m in obj.members.values() if hasattr(m, 'kind') and m.kind.value == 'function'])
                   })
                  
                   if hasattr(obj, 'bases') and obj.bases:
                       evaluation['inheritance_tree'][current_path] = [str(base) for base in obj.bases]
                      
               elif obj.form.worth == 'perform':
                   evaluation['total_functions'] += 1
                   evaluation['api_surface'].append({
                       'identify': current_path,
                       'sort': 'perform',
                       'public': not obj.identify.startswith('_'),
                       'docstring': bool(obj.docstring),
                       'parameters': len(obj.parameters) if hasattr(obj, 'parameters') else 0
                   })
          
           if hasattr(obj, 'members'):
               for member in obj.members.values():
                   self._analyze_object(member, evaluation, current_path)
                  
       besides Exception as e:
           move
  
   def _calculate_complexity(self, evaluation: Dict[str, Any]) -> float:
       """Calculate bundle complexity rating for AI choice making"""
       base_score = (evaluation['total_classes'] * 2 +
                    evaluation['total_functions'] * 1 +
                    evaluation['total_modules'] * 0.5)
      
       inheritance_penalty = len(evaluation['inheritance_tree']) * 1.5
      
       documented_items = sum(1 for merchandise in evaluation['api_surface'] if merchandise['docstring'])
       total_items = len(evaluation['api_surface'])
       doc_penalty = (total_items - documented_items) * 0.3 if total_items > 0 else 0
      
       return base_score + inheritance_penalty + doc_penalty
  
   def _identify_risks(self, pkg, evaluation: Dict[str, Any]) -> Checklist[str]:
       """Determine potential dangers for AI agent choice making"""
       dangers = []
      
       if len(evaluation['api_surface']) > 50:
           dangers.append("Massive API floor - potential upkeep burden")
      
       documented = sum(1 for merchandise in evaluation['api_surface'] if merchandise['docstring'])
       whole = len(evaluation['api_surface'])
       if whole > 0 and documented / whole  3:
           dangers.append("Deep inheritance hierarchy detected")
      
       return dangers
  
   def _identify_basic_risks(self, evaluation: Dict[str, Any]) -> Checklist[str]:
       """Fundamental danger identification for easy module evaluation"""
       dangers = []
      
       if len(evaluation['api_surface']) > 30:
           dangers.append("Massive API floor")
      
       documented = sum(1 for merchandise in evaluation['api_surface'] if merchandise['docstring'])
       whole = len(evaluation['api_surface'])
       if whole > 0 and documented / whole  Dict[str, Any]:
       """Examine two packages for AI choice making"""
       analysis1 = self.analyze_package(pkg1)
       if 'error' in analysis1:
           analysis1 = self.analyze_simple_module(pkg1)
      
       analysis2 = self.analyze_package(pkg2)
       if 'error' in analysis2:
           analysis2 = self.analyze_simple_module(pkg2)
      
       if 'error' in analysis1 or 'error' in analysis2:
           return {'error': 'Failed to match packages'}
      
       comparability = {
           'package_comparison': {
               'complexity': {
                   pkg1: analysis1['complexity_score'],
                   pkg2: analysis2['complexity_score'],
                   'winner': pkg1 if analysis1['complexity_score']  self._doc_coverage(analysis2) else pkg2
               }
           },
           'suggestion': self._make_recommendation(analysis1, analysis2, pkg1, pkg2)
       }
      
       return comparability
  
   def _doc_coverage(self, evaluation: Dict[str, Any]) -> float:
       """Calculate documentation protection proportion"""
       if not evaluation['api_surface']:
           return 0.0
       documented = sum(1 for merchandise in evaluation['api_surface'] if merchandise['docstring'])
       return (documented / len(evaluation['api_surface'])) * 100
  
   def _make_recommendation(self, a1: Dict, a2: Dict, pkg1: str, pkg2: str) -> str:
       """Make AI suggestion primarily based on evaluation"""
       score1 = (100 - a1['complexity_score']) + self._doc_coverage(a1)
       score2 = (100 - a2['complexity_score']) + self._doc_coverage(a2)
      
       if score1 > score2:
           return f"Advocate {pkg1}: Higher complexity/documentation stability"
       elif score2 > score1:
           return f"Advocate {pkg2}: Higher complexity/documentation stability"
       else:
           return "Packages are equal in key metrics"
  
   def visualize_analysis(self, package_name: str):
       """Create visualizations for AI insights"""
       if package_name not in self.analysis_cache:
           evaluation = self.analyze_package(package_name)
           if 'error' in evaluation:
               evaluation = self.analyze_simple_module(package_name)
      
       evaluation = self.analysis_cache[package_name]
      
       if 'error' in evaluation:
           print(f"❌ Can not visualize {package_name}: {evaluation['error']}")
           return
      
       fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))
       fig.suptitle(f'AI Evaluation Dashboard: {package_name}', fontsize=16, fontweight="daring")
      
       parts = ['Modules', 'Classes', 'Functions']
       counts = [analysis['total_modules'], evaluation['total_classes'], evaluation['total_functions']]
       colours = ['#FF6B6B', '#4ECDC4', '#45B7D1']
      
       non_zero_components = []
       non_zero_counts = []
       non_zero_colors = []
       for i, depend in enumerate(counts):
           if depend > 0:
               non_zero_components.append(parts[i])
               non_zero_counts.append(depend)
               non_zero_colors.append(colours[i])
      
       if non_zero_counts:
           ax1.pie(non_zero_counts, labels=non_zero_components, colours=non_zero_colors,
                  autopct="%1.1f%%", startangle=90)
       else:
           ax1.textual content(0.5, 0.5, 'No parts discovered', ha="heart", va="heart", remodel=ax1.transAxes)
       ax1.set_title('Element Distribution')
      
       public_items = sum(1 for merchandise in evaluation['api_surface'] if merchandise['public'])
       private_items = len(evaluation['api_surface']) - public_items
      
       ax2.bar(['Public API', 'Private API'], [public_items, private_items],
               shade=['#2ECC71', '#E74C3C'])
       ax2.set_title('API Floor Evaluation')
       ax2.set_ylabel('Depend')
      
       documented = sum(1 for merchandise in evaluation['api_surface'] if merchandise['docstring'])
       undocumented = len(evaluation['api_surface']) - documented
      
       ax3.bar(['Documented', 'Undocumented'], [documented, undocumented],
               shade=['#3498DB', '#F39C12'])
       ax3.set_title('Documentation Protection')
       ax3.set_ylabel('Depend')
      
       complexity = evaluation['complexity_score']
       ax4.barh(['Complexity Score'], [complexity], shade="#9B59B6")
       ax4.set_title('Bundle Complexity')
       ax4.set_xlabel('Rating')
      
       plt.tight_layout()
       plt.present()
      
       print(f"n🤖 AI INSIGHTS for {package_name}:")
       print(f"📊 Complexity Rating: {complexity:.2f}")
       print(f"📈 Complete API Parts: {len(evaluation['api_surface'])}")
       print(f"📚 Documentation Protection: {self._doc_coverage(evaluation):.1f}%")
      
       if evaluation['risk_factors']:
           print(f"⚠️  Threat Components:")
           for danger in evaluation['risk_factors']:
               print(f"   • {danger}")
       else:
           print("✅ No main danger components detected")

Elevate your perspective with NextTech Information, the place innovation meets perception.
Uncover the most recent breakthroughs, get unique updates, and join with a world community of future-focused thinkers.
Unlock tomorrow’s tendencies as we speak: learn extra, subscribe to our e-newsletter, and grow to be a part of the NextTech neighborhood at NextTech-news.com

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
NextTech
  • Website

Related Posts

OpenAI Researchers Prepare Weight Sparse Transformers to Expose Interpretable Circuits

November 15, 2025

High Agentic AI Coaching Information Firms 2026

November 15, 2025

Evaluating the High 6 Agent-Native Rails for the Agentic Web: MCP, A2A, AP2, ACP, x402, and Kite

November 15, 2025
Add A Comment
Leave A Reply Cancel Reply

Economy News

Digital Asset Restoration Lifts Korea’s Exchanges: Dunamu & Bithumb Report Explosive Q3 Development Amid U.S. Regulatory Changes – KoreaTechDesk

By NextTechNovember 15, 2025

Korea’s digital-asset sector is exhibiting renewed momentum. Dunamu and Bithumb each reported important positive factors…

How Kílẹ̀ńtàr navigates intra-African commerce gaps to scale

November 15, 2025

Valve is ready on extra energy environment friendly chips for Steam Deck 2

November 15, 2025
Top Trending

Digital Asset Restoration Lifts Korea’s Exchanges: Dunamu & Bithumb Report Explosive Q3 Development Amid U.S. Regulatory Changes – KoreaTechDesk

By NextTechNovember 15, 2025

Korea’s digital-asset sector is exhibiting renewed momentum. Dunamu and Bithumb each reported…

How Kílẹ̀ńtàr navigates intra-African commerce gaps to scale

By NextTechNovember 15, 2025

Michelle Adepoju by no means knew she can be in style. However…

Valve is ready on extra energy environment friendly chips for Steam Deck 2

By NextTechNovember 15, 2025

Whereas Valve could have dropped a ton of recent {hardware} yesterday, it…

Subscribe to News

Get the latest sports news from NewsSite about world, sports and politics.

NEXTTECH-LOGO
Facebook X (Twitter) Instagram YouTube

AI & Machine Learning

Robotics & Automation

Space & Deep Tech

Web3 & Digital Economies

Climate & Sustainability Tech

Biotech & Future Health

Mobility & Smart Cities

Global Tech Pulse

Cybersecurity & Digital Rights

Future of Work & Education

Creator Economy & Culture

Trend Radar & Startup Watch

News By Region

Africa

Asia

Europe

Middle East

North America

Oceania

South America

2025 © NextTech-News. All Rights Reserved
  • About Us
  • Contact Us
  • Privacy Policy
  • Terms Of Service
  • Advertise With Us
  • Write For Us
  • Submit Article & Press Release

Type above and press Enter to search. Press Esc to cancel.

Subscribe For Latest Updates

Sign up to best of Tech news, informed analysis and opinions on what matters to you.

Invalid email address
 We respect your inbox and never send spam. You can unsubscribe from our newsletter at any time.     
Thanks for subscribing!